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Flexural strength analysis of brittle materials
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The relation between flaw density and strength of ceramic or brittle materials were derived
and applied to a commonly used testing method of four-point bending for determining the
strengths of ceramic or brittle materials. Previous analysis failed to include the failures
outside or at the inner loading positions for four-point test data. The present approach
elevates such a constrain so that the relation applies to failures occurs at any points
between the outer loading positions for four-point test data.
C© 2003 Kluwer Academic Publishers

1. Introduction
It is well known that the strength of ceramic or brittle
materials is a statistical quantity, which is sensitive to
intrinsic flaws. As opposed to the conventional concepts
used for metallic material, statistical analysis of frac-
ture in ceramic materials has been found to be more
appropriate [1]. One of the approaches has been the
popular Weibull analysis, which assumes an arbitrary
function for flaw strength distribution [2]. However,
real strength distribution of ceramic materials are not
necessarily characterized by the Weibull distribution. In
Batdorf’s Approach, a crack density function related to
material and stress is used [3, 4]. A Taylor series was
initial proposed for the expression of the crack density.
This resulted in computational difficulties. In a revised
form, for analyzeing four-point bending test data, the
two-parameter Weibull distribution was used to express
the failure data. In elemental strength approaches [5, 6]
based on non-coplanar failure criterion, prediction on
biaxial strength has been found to accurate. Another
generalized approach base on weakest link theory was
proposed to evaluate data of uniaxial strength test, ex-
pandable tensile test, three-point bending test, and four-
point bending test [7]. However, the analysis for four-
point test data was based on constrains that exclude
failures outside or at the inner loading positions. This
paper extends this approach to include the failures out-
side or at the inner loading positions for four-point test
data. The significance is that the role of using a standard
four-point bending test for ceramic materials has been
addressed [8, 9]. Specimens of sintered alumina were
tested and the results were interpreted by the current
analysis.

2. Deriviation
Based on the Poisson postulates [10], the probability of
failure, P, of a part with volume V can be determined
as follows.

1 − P(S) = exp

[
−

∫
V

dv

∫ S

0
g(S) dS

]
(A)

where g(S) dS is the number of flaws per unit vol-
ume, dv. The purpose of a statistical analysis is to de-
rive g(S) from testing data or the probability of failure,
P . The function g(S) can then be used to estimate the
fracture probability of components fabricated from the
same material. For the popular four-point bending test,
the analysis is given below. The analysis assumes that
volume or internal flaws dominate. Similar approach
can be shown when surface flaws dominate.

The tensile stress distribution in a specimen subjected
to four-point bending, as shown in Fig. 1, can be ex-
pressed as

S = Sm
x

d
(B)

and

S = Sm

(
x

d

)(
l2 − y

l2 − l1

)
(C)

for y < l1 and l1 < y < l2, respectively, where S is the
stress function, Sm is the maximum stress at which spec-
imen breaks, and x , y, l1, l2, and d are given in Fig. 1.
For volume or internal flaws, it can be shown that [11]

G(Sm) = − ln[1− P(Sm)] =
∫

V

∫ Sm

0
g(S) dS dv (D)

Upon substituting Eqs. (B) and (C) into Eq. (D), and
rearrangement, one can obtain

G(Sm) = 2b
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]

(E)

where b is the width of the specimen. The above equa-
tion can be further simplified to
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Figure 1 A four-point bending test for ceramic or brittle materials.

G(Sm) = A

Sm
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S
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)
g(S) dS (F)

where A = 2bdl1 and B = 2bd(l2 − l1). Taking the first
and second derivatives of G(Sm), one obtains

G ′(Sm) = Ag(Sm) − (A − B)
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and
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where g′(Sm) is the first derivative of g(Sm). From
Eqs. (F) and (G), one can have
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0
Sg(S) dS = Sm

B
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(I)
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Sm g(Sm)

]
(J)

Substitution of Eqs. (I) and (J) into Eq. (H) gives the
following first order differential equation of g(Sm).

g(Sm) + l1Sm

l1 + l2
g′(Sm) = 1

2bd(l1 + l2)

×
[

G(Sm)

Sm
+ 3G ′(Sm) + Sm G ′′(Sm)

]
(K)

The general solution for the above first-order differen-
tial equation is

g(Sm) = exp

[ −l1S2
m

2(l1 + l2)

]( ∫ Sm

0
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]

×
[
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S

+ 3G ′(S) + SG ′′(S)

)]
dS + C (L)

where C is a constant. In the above equation, g(Sm)
can be determined by data fitting of P or G, which
can be obtained through testing a sufficient amount of
specimens.

3. Data analysis
Three high-purity sintered alumina, designated as
BC(N), BR(N), and BA, were prepared for four-point
bending test. Characteristics of these alumina are given
in Table I. The four-point bending test was conducted
according to Military Standard 1942(MR) [8]. The
specimen dimensions were 50.0 mm by 4.0 mm (b in
Fig. 1) by 3.0 mm (2d in Fig. 1). The inner span,
2l1 = 20.0 mm and the outer span, 2l2 = 40.0 mm. The
surface of each specimen was polished with a 600-grit
diamond wheel. The four long edges of each speci-
men were uniformly chamfered ar 45◦, a distance of
0.15 mm. The test was performed at a cross-head speed
of 0.05 cm/s. For each material, at least 50 specimens
were tested. Examination on the fractured specimens
indicates that failures occurred mostly inside the in-
ner loading positions while some were at and outside
the inner loading positions. Data were taken only from
the specimens that fractured inside the inner loading
positions.

Data from the bending test were first ordered. The cu-
mulative probability of failure, P(Sm), was then plotted
as a function of failure or peak stress. This is shown in
Fig. 2 for all the materials. Not all the data points are
shown as many of them merge to form a single point
on the present scale. The relation between P and G
given in Eq. (D) was then determined and is shown
in Fig. 3. As shown in Fig. 3, no significant localized
peak in G(Sm) was found. This allows polynomial fits
to be obtained for function G(Sm) in a way that lo-
cal oscillations are smoothed while the general shape
is retained. Therefore, the derivatives of G(Sm), which
determine g(Sm), can be deduced from the polynomi-
als. Such polynomial fits for all three test sets are shown
in Fig. 3 in terms of the function, G(Sm), The flaw den-
sities for all three materials can therefore be obtained

TABLE I Density, porosity, and average grain size of sintered alumina
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Figure 2 Failure probability as a function of strength for all three mate-
rials studied.

Figure 3 Polynomial fits to the data shown in Fig. 2 where the function
G(Sm ) is used.

using the polynomials in Fig. 3 and Eq. (M). The result
is shown in Fig. 4. Comparing all three materials, Ma-
terial BC(N) has the highest flaw densities at relatively
low values of strength. On the other hand, Material BA
exhibits the lowest flaw densities at relatively high val-
ues of strength. This result, together with the data given
in Table I, suggest that in these materials a grain can
be regarded as a flaw in many brittle polycrystalline
materials [12].

Figure 4 Flaw density obtained from Fig. 3 and Eq. (M). g(Sm ) in
(Mnm)−1.

4. Conclusion
Previous statistical approaches for analyzing the
strength of brittle materials fail to include the failures
outside or at the inner loading positions for four-point
test data. The present approach elevates such a con-
strain, and a formulation was derived and applied to
failures occurs at any points between the outer loading
positions for four-point test data.
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